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SERVICE LIFE OF PRESSURIZED VESSELS

UDC 539.376+539.4A. F. Nikitenko and I. V. Lyubashevskaya

A study is made of the dependence of the time of propagation of a fracture front in thick-walled
vessels subjected to internal pressure on the wall thickness and the employed version of kinetic theory
of creep. The stress intensity is taken to be the equivalent stress. Recommendations on using the
results in computational applications are formulated.
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In computation practice, the time of deformation to fracture for a body of an arbitrary configuration (a struc-
tural member) is usually divided into two intervals [1] which correspond to different stages of material deformation
under external thermal-force loading. The first stage, characterized by damage accumulation, ends when the accu-
mulated damage reaches a critical value at a certain point or region of the body, which corresponds to the onset of
fracture. The second stage, characterized by the propagation of the fracture front, is finished by complete fracture
of the body (for example, by its fragmentation).

The estimation of the time of propagation of the fracture front is a labor-consuming problem because neither
the front shape nor the direction of its propagation are known in advance. Apparently, for this reason, the life of
a body is sometimes identified with the time of onset of its fracture [1], i.e., with the duration of the first stage of
deformation (the latent fracture stage).

Estimation of the time of propagation of the fracture front has been the subject of a small number of studies
[2–10]. The results of these studies are sometimes contradictory. For example, in studies of the propagation of
the fracture front in a thick-walled tube under internal pressure, it has been established that its duration can be
about 50% of the duration of the stage of latent fracture, i.e., the tube with partially fractured cross section can
resist external loading for a long time [3]. In a similar problem for a rotating disk, it is noted that fracture occurs
catastrophically rapidly [5] (the duration of this stage is about 6–7% of the duration of the stage of latent fracture).

It is obvious that such contradictory estimates of the time of propagation of the fracture front are due to
several reasons, including the use of various versions of creep theory, which are not always equivalent, and different
criteria of creep rupture strength and objects of research (thick-walled tubes [3, 4, 8–10], rotating disks [5, 6],
extended plates of constant thickness [3, 7], beams in straight transverse bending [3], and torque shafts [2]).

In the present paper, we study the dependence of the duration of fracture front propagation in thick-walled
vessels under internal pressure on the wall thickness and the version of kinetic creep theory used. The stress intensity
that coincides with the maximum tangential stress to within a factor is taken to be the equivalent stress.

1. Stage of Latent Fracture. Let a uniformly heated thick-walled vessel having the shape of a tube in
rectangular cylindrical coordinates (r, ϕ, z) or the shape of a sphere in spherical coordinates (r, ϕ, ψ) be subjected
to a stationary internal pressure q. Any point of the tube, the stresses σϕ, σz , and σr arise, and at any point of the
sphere, the stresses σϕ, σψ, and σr arise, all of them being principal. At any time t, the stresses σϕ and σr satisfy
the equilibrium equation
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dσr
dr

+
s(σr − σϕ)

r
= 0 (1)

and the boundary conditions

σr(a0, t) = −q, σr(b0, t) = 0, (2)

where a0, b0, and r are the inner, outer, and current radii of the vessel; s = 1 for the tube and s = 2 for the sphere.
The principal stress vector σz is counterbalanced by the internal pressure force on the tube bottom:

2

b0∫

a0

σzr dr = a2
0q.

For the sphere, by virtue of symmetry, σϕ = σψ.
Let the tube be in a plane strain state (ṗz = 0), and in the sphere, by virtue of symmetry, ṗϕ = ṗψ. From

the aforesaid, the incompressibility condition for the material is written as sṗϕ + ṗr = 0. Here pϕ, pψ, pr, and
pz are the circumferential, meridional, radial, and axial strain components, respectively; the dot denotes the time
derivative. Because ṗϕ = u̇/r and ṗr = du̇/dr, it follows that u̇(r, t) = c1(t)/rs [u(r, t) is the radial displacement of
an arbitrary point of the Vessel and c1(t) is a function of time]. In view of the aforesaid, we obtain

ṗϕ = c1(t)/r1+s, ṗr = −sc1(t)/r1+s. (3)

As physical relations we use the Rabotnov kinetic theory of creep. The relations of this theory are written
as [5, 11]

ṗij =
W

σe

∂σe

∂σij
, W =

B1σ
n+1
e

ϕ1(ω)
, i, j = 1, 2, 3; (4)

ω̇ =
B2σ

g+1∗e
ϕ(ω)

, ω(xk, 0) = 0, ω(x∗k, t∗) = 1, (5)

where pij and σij are the creep strain and stress tensor components; σe and σ∗e are the equivalent stresses, which
are homogeneous first-order functions of stress, W = σij ṗij is the specific energy dispersion power for creep of the
material, B1, n, B2, and g are the creep and creep rupture strength characteristics of the material, ω is a parameter
that describes the creep damage accumulation from a phenomenological standpoint, and t∗ is the time of fracture
onset [the moment at which the damage parameter first reaches a critical value equal to unity at a certain point
with the coordinates x∗k (k = 1, 2, 3)].

It is obvious that system (4), (5) is a fairly general version of the kinetic theory. If ϕ1(ω) = ϕ(ω), one obtains
the most widespread version of this theory, whose particular cases are short-term creep theory [5, 12], the energy
version of creep and creep rupture strength theory [11, 13, 14], and various modifications of hardening theory [5, 14].
If ϕ1(ω) = 1, one obtains a simplified version of the Kachanov kinetic theory of creep [2, 3]. We will assume that

ϕ1(ω) = (1 − ω)m1 , ϕ(ω) = (1 − ω)m, 0 � m1 � m. (6)

To simplify the results, as the equivalent stresses in (4) and (5) we use the stress intensities σi = λ1(σϕ−σr)
(λ1 =

√
3/2 for the tube and λ1 = 1 for the sphere). In this case, under the assumptions made above, system (4)

becomes

ṗϕ =
λn+1

1 B1

s

(σϕ − σr)n

μm1
, ṗr = −λn+1

1 B1
(σϕ − σr)n

μm1
, (7)

where μ is an analog of the Kachanov continuity parameter:

μ(r, t) = [1 − ω(r, t)], (8)

and, according to (6) and (8), the functions ϕ1 and ϕ are defined as ϕ1(μ) = μm1 and ϕ(μ) = μm. The substitu-
tion (8) transforms Eq. (5) to the equation

μmμ̇ = −B2σ
g+1
i , μ(r, 0) = 1, μ(r∗, t∗) = 0, (9)

which implies that
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μ(r, t) =
(
1 − (m+ 1)λg+1

1 B2

t∫

0

(σϕ − σr)g+1 dτ
)1/(m+1)

. (10)

System (1)–(3), (7), (9), with the use (6) and (8), allows one to calculate the stress–strain state at any time with
allowance for damage accumulation in the material of uniformly heated thick-walled vessels loaded by internal
pressure.

The procedure of this calculation and its results are given below. Comparing (3) and (7), we obtain σϕ− σr
and σi = λ1(σϕ − σr):

σϕ − σr =
q

sJ1

[μ(r, t)]m1/n

X(t)
r−(1+s)/n, σi =

λ1q

sJ1

[μ(r, t)]m1/n

X(t)
r−(1+s)/n. (11)

Substituting (11) into (9) and (1), from (9) we have
μ∫

1

zk dz = −[(m+ 1)t0]−1

t∫

0

[X(τ)]−(g+1) dτ, k = [mn−m1(g + 1)]/n. (12)

In view of the first boundary condition in (2), relation (1) implies that

σr(r, t) = −q +
q

J1

r∫

a0

μm1/n

X(t)
r−1−(1+s)/n dr, (13)

and the second boundary condition in (2) implies that

b0∫

a0

[μ(r, t)]m1/nr−1−(1+s)/n dr = J1X(t). (14)

In (11)–(14),

J1 =

b0∫

a0

r−1−(1+s)/n dr, X(t) =
q

sJ1

( sc1(t)
λn+1

1 B1

)−1/n

; (15)

t0(r) =
[
(m+ 1)B2λ

g+1
1

( q

sJ1

)g+1

r−(1+s)(g+1)/n
]−1

. (16)

Obviously, solution of the problem formulated above reduces to solution of system (12), (14) for μ(r, t) and X(t).
Integration of (12) yields

[μ(r, t)]m1/n =
(
1 − ν̄

t0

t∫

0

[X(τ)]−(g+1) dτ
)β̄
, (17)

where

β̄ =
m1

n+ nm−m1(g + 1)
, ν̄ =

n+ nm−m1(g + 1)
n(m+ 1)

. (18)

Substitution of (17) into (14) yields the following equation for X(t):

b0∫

a0

(
1 − ν̄

t0

t∫

0

[X(τ)]−(g+1) dτ
)β̄
r−1−(1+s)/n dr = J1X(t). (19)

Knowing μ(r, t) and X(t), it is possible to determine the stress–strain state of the pressurized vessels. Indeed, from
(13) we determine σr(r, t), and from (11), we determine σϕ(r, t) and σi(r, t). The fracture onset time is calculated
from the condition μ(r∗, t∗) = 0. It is easy to show that fracture begins on the inner surface of the vessel (r∗ = a0).
For the integral in (12) to converge in the case μ(r∗, t∗) = 0, the material characteristics need to be subjected to
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Fig. 1. Normalized stress σ̄i (a) and damage parameter ω (b) versus normalized time τ for the inner (1
and 3) and outer (2 and 4) radii of the tube: curves 1 and 2 refer to the calculation results obtained
in the present work and curves 3 and 4 refer to the calculation results obtained using the Kachanov
theory; the vertical dashed curves are the fracture onset time according to the Kachanov theory.

constraints. Without writing these constraints, we note that they agree with experimental data [11, 14]. The strain
state is found from (3) through the use of (15).

The case m1 = 0 corresponds to calculations using the Kachahov kinetic theory. In this case, the stress state,
which we denote by σ0

i (ρ), is stationary. The fracture onset time will be denoted by t0∗. This time is calculated
from (16) for r = a0, i.e., t0∗ = t0(a0).

Figure 1 gives curves of the normalized stress σ̄i = σi(ρ, τ)/σ0
i (ρ) and the damage parameter ω versus the

normalized time τ = t/t0∗ in tube sections for various values of the current radius ρ = r/a0 (1 � ρ � β1 and
β1 = b0/a0). Curves 1 correspond to the redistribution of the chosen quantities on the inner radius (ρ = 1), and
curves 2 refers to the outer radius (ρ = β1 and β1 = 2).

In the calculations, we used the following constants in the constitutive equations (4)–(6): B1 = 3.5 ×
10−15 MPa−n · h−1, B2 = 2.8 · 10−15 MPa−(g+1) · h−1, n = 6, g = 4.75, m = 14, m1 = 10, and q = 40 MPa. The
values of the indicated characteristics correspond to D16T alloy at a temperature 250◦C [13, 14].

From the data presented in Fig. 1 it follows that fracture begins on the inner surface. Here the damage
parameter reaches the critical value equal to unity and the normalized stress decreases to zero. At all points of
the volume of the thick-walled vessels there is a continuous redistribution of the stress field, which, as noted above,
does not follow from the Kachanov theory solution (curve 3 in Fig. 1a), which exists in the interval 0 � τ � 1
(vertical dashed line). The variations in the damage parameter of this solution on the inner and outer radii are
shown in Fig. 1b (curves 3 and 4). From Fig. 1 it also follows that the fracture onset time exceeds (by more than
1.5 times in the given example) the time obtained from the Kachanov theory solution, and depends greatly on the
wall thickness of the vessel β1 and the material characteristic m1.

Figure 2a gives a family of curves whose parameter is the tube wall thickness (τ∗ = t∗/t0∗ is the normalized
fracture onset time and m1 is the material characteristic). Figure 2b shows the distribution of the parameter μ in
a section of the tube at the time of fracture onset versus the material characteristic m1. At the initial time, the
material is not damaged (curve 1). Curves 2–4 are the distribution of the parameter μ over the section (1 � ρ � β1

and β1 = 2) at the time of fracture onset (t = t∗) for various values of m1. In practice, life is sometimes estimated
by the fracture onset time t∗ [1]. We assume that the expended life is determined by the damage accumulated
in the material. From Fig. 2b it follows that the residual life of the vessel increases with decreasing material
characteristicm1. The results show that the Kachanov kinetic theory of creep predicts unreasonably underestimated
life of the vessel compared to the Rabotnov kinetic theory of creep. Thus, the life of the vessel is the longer the
larger the value of m1, which can be used as the basis for an optimum choice of the vessel material for operation
in a specified temperature loading range. Therefore, it is reasonable to estimate the time of propagation of the
fracture front.
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Fig. 2. Time of fracture onset in the tube (a) and residual life (b) versus the material characteristic m1:
(a) β1 = 1.2 (1), 1.5 (2), 2 (3), and 3 (4); (b) t = 0 (1) and m1 = 0 (2), 5 (3), and 10 (4).

2. Stage of Propagation of Fracture Front. It should be noted that the solution of the problem of
fracture front propagation in a body of arbitrary configuration is considerably complicated since the site of origin
of the front, its shape, and propagation direction are not known in advance.

At t > t∗, two zones are formed in the body: a zone where 1 > μ(t) > 0 and a zone where fracture has
already occurred and the material has lost the ability to resist [5]. The boundary between the fractured and intact
zones is the fracture front, which moves in such a manner that, at the fracture front, μ = 0 and no forces from the
fractured zone are transferred to the intact zone [5].

It should be noted that the fracture onset site at the time t = t∗ depends greatly on the choice of the
equivalent stress. In the case of thick-walled tubes, fracture can begin on the outer surface r = b0 if the largest
normal stress is used as the equivalent stress [3], it can begin on the inner surface r = a0 when using the stress
intensity adopted in [10] or on the surface r = c, a0 < c < b0 if the equivalent stress is the product of power
functions of the stress intensity and the largest normal stress [8]. In the problem considered, fracture arises on the
inner surface r = a0 of the pressurized vessels, the fracture front is symmetric and moves toward the outer surface
r = b0, and the radius of the fracture front r = a(t) at any time t > t∗. It is obvious that a(t∗) = a0 and a(t∗f ) = b0
(t∗f is the time corresponding to the complete fracture of the vessel). The time of propagation of the fracture front
is t∗f − t∗.

In the intact zone, where 1 > μ(t) > 0, Eqs. (3)–(10) and the equilibrium equation (1) are valid at any time
t > t∗ and, in view of the above remarks, boundary conditions (2) are written as

σr(a(t), t) = −q, σr(b0, t) = 0.

By analogy with (11) and (15), we obtain

σϕ − σr =
q

sJ1f

[μ(r, τ)]m1/n

X(τ)
r−(1+s)/n, σi = λ1(σϕ − σr); (20)

J1f =

b0∫

a(t)

r−1−(1+s)/n dr. (21)

In (20) and (21) and in the following, a(t) � r � b0. The replacement of J1 by J1f does not disturb the structure
of relations (15) and (16).
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TABLE 1

Relative Time of Propagation
of the Fracture Front in the Tube τ̄∗

β1 m1 C/A τ̄∗ C/B

0 0.302 0.053 0.053
3 0.176 0.036 0.036

1.2 5 0.105 0.025 0.024
7 0.050 0.014 0.014
10 0.0067 0.0028 0.0028
13 0.000017 0.000015 0.000015

0 0.824 0.214 0.214
3 0.625 0.178 0.177

2 5 0.480 0.149 0.147
7 0.331 0.115 0.113
10 0.123 0.057 0.056
13 0.008 0.007 0.007

0 1.254 0.467 0.467
3 1.051 0.415 0.412

4 5 0.890 0.372 0.367
7 0.704 0.318 0.312
10 0.385 0.212 0.206
13 0.079 0.071 0.070

TABLE 2

Relative Time of Propagation
of the Fracture Front in the Sphere τ̄∗

β1 m1 C/A τ̄∗ C/B

0 0.758 0.186 0.186
3 0.562 0.152 0.151

1.5 5 0.423 0.125 0.124
7 0.282 0.095 0.093
10 0.097 0.044 0.043
13 0.005 0.004 0.004

0 1.052 0.336 0.336
3 0.849 0.291 0.289

2 5 0.693 0.254 0.251
7 0.521 0.209 0.206
10 0.247 0.126 0.122
13 0.033 0.030 0.029

0 1.247 0.462 0.462
3 1.044 0.411 0.408

2.5 5 0.883 0.367 0.363
7 0.698 0.314 0.308
10 0.380 0.208 0.203
13 0.077 0.069 0.068

Using (20), (21), (16) and (18), instead of (17) we obtain the expression

[μ(r, t)]m1/n =
(
1 − ν̄cr−(1+s)(g+1)/n

t∫

0

[J1f (τ)X(τ)]−(g+1) dτ
)β̄
, (22)

where c = (m+ 1)B2(λ1q/s)g+1.
At the time t, let the radius of the fracture front be a. On the line of the fracture front, μ(a(t), t) = 0. In

view of this, from (22) we have

a(1+s)(g+1)/n = ν̄c

t∫

0

[J1f (τ)X(τ)]−(g+1) dτ. (23)

Differentiation of (23) with respect to t yields

a−1+(1+s)(g+1)/n da

dt
=

nν̄c

(1 + s)(g + 1)

[
J1f (t)X(t)

]−(g+1)

. (24)

Using (23), from (22) we obtain

[μ(r, t)]m1/n =
[
1 − (r/a(t))−(1+s)(g+1)/n

]β̄
. (25)

Replacing a0 by a(t) and J1 by J1f in (14) and substituting relation (25) into the expression obtained, instead of
(19) we have

b0∫

a(t)

[
1 −

( r
a

)−(1+s)(g+1)/n]β̄
r−1−(1+s)/n dr = J1f (t)X(t). (26)

Integration of (24) with the use of (26) yields

I(a) =
ν̄cn

(1 + s)(g + 1)

t∫

t∗

dτ,

I(a) =

a∫

a0

a−1+(1+s)(g+1)/n
{ b0∫

a

[
1 −

( r
a

)−(1+s)(g+1)/n]β̄
r−1−(1+s)/n dr

}g+1

da.

(27)
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Fig. 3. Variation in the wall thickness of the tube (a) and sphere (b) during propagation of the
fracture front: m1 = 0 (1), 5 (2), and 10 (3).

In the integration in (27), it is reasonable to convert to the new variables v(t) = a(t)/a0 and u(t) = r/a(t).
Obviously, v(t∗) = 1 and v(t∗f ) = β1; u(t) = 1 for r = a(t) and u(t) = β1/v(t) for r = b0.

Tables 1 and 2 give values of the time τ̄∗ = (t∗f − t∗)/t∗ and its upper and lower estimates for various
values of β1 and m1 for the tube and sphere. These results show that the values of τ̄∗ increase with increasing wall
thickness of the vessel for any fixed value of m1 and decrease with increasing m1 for any wall thickness of the vessel.

As an example, Fig. 3 gives results of solution of Eq. (27) for the tube and sphere [τ̄ = (t− t∗)/t∗ and βf is
the thickness of the intact part of the vessel during fracture front propagation]. At the moment the front begins to
move, βf = β1 (β1 = b0/a0), and with time it decreases to unity, which corresponds to the complete fracture of the
vessel material. At the initial time t > t∗, the front moves rather slowly, and then it moves catastrophically rapidly
irrespective of the material characteristic m1 and the vessel wall thickness.

An analysis of the results leads to the conclusion that the time of propagation of the fracture front can
be a few hundredth to tens of percent of the latent fracture time t∗, depending on the vessel wall thickness and
the material characteristic m1. This should be taken into account in computation practice. It is obvious that the
identification of the life of a structural member with the fracture onset time, as is done in practice [1], is not always
correct. Therefore, it seems reasonable to obtain upper and lower estimates of the time of fracture front propagation
in pressurized thick-walled vessels.

We note that the result of integration of (27) can be represented in compact form if the time of fracture front
propagation t∗f − t∗ is normalized not to t∗ but to t0∗. Using this expression and the corresponding expressions for
J1, t0∗, and c from (27), we finally obtain

t∗f − t∗
t0∗

=
(1 + s)(g + 1)

ν̄n
f(β1)I(β1), (28)

where

I(β1) =

β1∫

1

v−1
[ β1/v∫

1

u−1−(1+s)/n
(
1 − u−(1+s)(g+1)/n

)β̄
du

]g+1

dv,

f(β1) =
(
J1a

(1+s)/n
0

)−(g+1)

=
(1 + s

n

)g+1( β
(1+s)/n
1

β
(1+s)/n
1 − 1

)g+1

.

The upper and lower estimates of the fracture onset time of structural members were obtained in [15]:

A ≤ t∗
t0∗

≤ B, A =
1 − (1 − λ)g+2

λν̄(g + 2)
, B =

1 − (1 − λ)1/ν̄

λ
, β̄ < 1,

β̄ =
m1

n+mn−m1(g + 1)
, ν̄ =

n+mn−m1(g + 1)
n(m+ 1)

, λ =
t0∗
t̄0
.

(29)
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Here t̄0 is given by the relation ∫

V

W 0

t0
dV =

1
t̄0

∫

V

W 0 dV,

where W 0 is the energy dissipation power under the assumption of steady-state creep. In the case β̄ > 1, the
boundaries of the variation of the quantity t∗/t0∗ in (29) are interplaced.

Using inequalities (29) together with (28), we finally obtain

C

B
≤ t∗f − t∗

t∗
≤ C

A
, (30)

where C is the right side in (28).
In Tables 1 and 2, numerical results of the relative time of fracture front propagation in pressurized vessels

are compared with its lower and upper estimates according to inequalities (30). (The data in Tables 1 and 2 are
given for β̄ < 1.)

From the analysis of the results it follows that the fracture onset time and the time of propagation of the
fracture front depend greatly on the vessel wall thickness and the material characteristic m1. The estimates (30)
are recommended for use in computation practice.
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